Transposon-mediated Chromosomal Integration of Transgenes in the Parasitic Nematode Strongyloides ratti and Establishment of Stable Transgenic Lines
نویسندگان
چکیده
Genetic transformation is a potential tool for analyzing gene function and thereby identifying new drug and vaccine targets in parasitic nematodes, which adversely affect more than one billion people. We have previously developed a robust system for transgenesis in Strongyloides spp. using gonadal microinjection for gene transfer. In this system, transgenes are expressed in promoter-regulated fashion in the F1 but are silenced in subsequent generations, presumably because of their location in repetitive episomal arrays. To counteract this silencing, we explored transposon-mediated chromosomal integration of transgenes in S. ratti. To this end, we constructed a donor vector encoding green fluorescent protein (GFP) under the control of the Ss-act-2 promoter with flanking inverted tandem repeats specific for the piggyBac transposon. In three experiments, free-living Strongyloides ratti females were transformed with this donor vector and a helper plasmid encoding the piggyBac transposase. A mean of 7.9% of F1 larvae were GFP-positive. We inoculated rats with GFP-positive F1 infective larvae, and 0.5% of 6014 F2 individuals resulting from this host passage were GFP-positive. We cultured GFP-positive F2 individuals to produce GFP-positive F3 L3i for additional rounds of host and culture passage. Mean GFP expression frequencies in subsequent generations were 15.6% in the F3, 99.0% in the F4, 82.4% in the F5 and 98.7% in the F6. The resulting transgenic lines now have virtually uniform GFP expression among all progeny after at least 10 generations of passage. Chromosomal integration of the reporter transgenes was confirmed by Southern blotting and splinkerette PCR, which revealed the transgene flanked by S. ratti genomic sequences corresponding to five discrete integration sites. BLAST searches of flanking sequences against the S. ratti genome revealed integrations in five contigs. This result provides the basis for two powerful functional genomic tools in S. ratti: heritable transgenesis and insertional mutagenesis.
منابع مشابه
piggyBac
In addition to their natural role in eukaryotic genome evolution, transposons can be powerful tools for functional genomics in diverse taxa. The piggyBac transposon has been applied as such in eukaryotic parasites, both protozoa and helminths, and in several important vector mosquitoes. piggyBac is advantageous for functional genomics because of its ability to transduce a wide range of taxa, it...
متن کاملHost immune responses are necessary for density dependence in nematode infections.
Nematode infections are subject to density-dependent effects on their establishment, survivorship and fecundity within a host. These effects act to regulate and stabilize the size of nematode populations. Understanding how these density-dependent effects occur is important to guide the development of control strategies against parasitic nematodes and the diseases that they cause. These density-...
متن کاملSpatial and discrimination learning in rodents infected with the nematode Strongyloides ratti.
Recent work has shown that mice with subclinical parasitic infections suffer impaired spatial learning and memory, as assayed in an open-field water maze. Although the mechanism underlying this effect is not clear, the phenomenon has been reported following infection with both a protozoan parasite (Eimeria vermiformis) and a gastrointestinal nematode (Heligmosomoides polygyrus). In a variety of...
متن کاملFunctional consequences of genetic diversity in Strongyloides ratti infections.
Parasitic nematodes show levels of genetic diversity comparable to other taxa, but the functional consequences of this are not understood. Thus, a large body of theoretical work highlights the potential consequences of parasite genetic diversity for the epidemiology of parasite infections and its possible implications for the evolution of host and parasite populations. However, few relevant emp...
متن کاملThe evolutionary ecology of host-specificity: experimental studies with Strongyloides ratti.
Factors constraining the evolution of host-specificity were investigated using a gastrointestinal parasitic nematode, Strongyloides ratti. S. ratti is a natural parasite of rats which can also reproduce, with decreased success, in laboratory mice. Observed host-specificity arose from lower establishment, reduced per capita fecundity and more rapid expulsion of parasites from mice relative to ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012